
www.manaraa.com

Conversation-enabled Web Services for Agents and e-Business

James E. Hanson, Prabir Nandi, David W. Levine
IBM T.J. Watson Research Center

Yorktown Heights NY 10598
{jehanson | prabir | dwl}@us.ibm.com

Abstract

In this article we outline some enhancements to the

existing Web Services architecture and programming
model, which will enable them to support the needs of
fully-realized dynamic e-business and software agents—
which have much in common. Of particular importance is
conversation support, with its core element, conversation
policies.

1 Introduction

The emergence and continued development of Web

Services has brought them to the brink of supporting rich
e-business applications. The simplified invocation model
afforded by SOAP, the standardized, public description of
invocation syntax provided by WSDL and UDDI, and the
encapsulation of detailed message-transport plumbing
behind a standard invocation framework (WSIF) all are
essential stepping-stones toward full support of e-business
interactions[1]. But at present, Web Services remain a
“vending machine” model—that is, they limit themselves
to providing a way in which functions can be made
available for invocation over the internet.

Rich e-business interactions require a more peer-to-
peer, proactive, dynamic, loosely coupled mode of
interaction. A fully realized e-business acts as both the
“invoker” and “invokee” in two-sided (or multi-sided),
multi-step, complex patterns of interaction with other e-
businesses. Its internal business processes are under its
unilateral control, both as to what to do in any given
interaction, and when and how to make changes; while its
interactions with other businesses are mediated by public
(or at least commonly held) protocols. Even in cases
where there is an agreement in place, the business retains
control over the extent to which it follows the agreement.

Interacting software agents correspond almost exactly
with the above description. In terms of how they interact,
differences between agents and fully-realized e-business
are largely a matter of scale and emphasis. But from a
Web Services architectural standpoint, they are
synonymous.

Consider the following two scenarios:
Scenario 1. EB1, an e-business, contacts another e-

business, EB2, about purchasing supplies. EB2 replies
that the supplies are currently up for auction, names the

auction protocol in use, and offers to include EB1 among
the bidders. EB1 checks whether it has the business
process logic to support that protocol; it does; so it agrees
to participate. EB1 participates in the auction. It bids
several times, but does not win. It then contacts another e-
business, EB3; finds that the goods are available, either at
auction or via one-on-one negotiation over price, quantity,
and delivery time. EB1, as a result of having lost the
previous auction, opts for the negotiation. EB1 and EB3
exchange a series of offers and counteroffers, eventually
arriving at a deal. Then they exchange payment and
delivery information, confirmation numbers, and so forth.

Scenario 2. Agent1 contacts Agent2 about renting a
car. They engage in a dialogue about Agent1’s
preferences, Agent2’s inventory, and so forth. For
protocol, they agree to use a modified Agent
Communication Language, in which each message
contains one of a half-dozen standard performatives to
identify the intent of message, and message contents
follow a standard car-rental ontology. At some point,
Agent1 volunteers the information that it would be willing
to pay up to $10 more for a convertible. This uses a non-
standard performative. Agent2 cannot process the non-
standard performative, so it replies, “not understood”. The
negotiation continues as if nothing had been said. Some
time later, Agent2 asks whether Agent1 wants a child seat.
This term is not in the ontology Agent1 said it was using;
so it contacts an ontology server to find out about the
term, to be told that it relates to “passengers” who are
“children”. Agent1 looks in its fact store to realize that no
information about children is contained in its owner’s user
profile, and no special overrides have been added for this
negotiation. So it replies, “no thank you”. The transaction
continues and eventually completes to the satisfaction of
both parties.

In both of these scenarios, all the decision-making
capabilities are well within reach of automation today.
Thus, such interactions are possible if the Web Services
architecture can support them.

At present it cannot. But, as we shall see, this goal is
in fact within reach. Many of the shortcomings we will
discuss are in fact already recognized, and enhancements
are under active development. Others are less well
understood.

The interoperability needs of fully-realized dynamic e-
business are remarkably similar to those of software
agents, to the extent that we can describe a common

www.manaraa.com

architecture for both. The purpose of this article is to
explore these common middleware needs of e-businesses
and software agents, and to identify the places where Web
Services may be enhanced to meet those needs. We
believe that with a significant and crucial shift in
perspective, coupled with a few technical changes, Web
Services can accommodate the needs of both software
agents and fully-realized e-businesses.

1.1 Conversational model of interactions
It is useful to describe the model of a business or agent

that we are advocating: the conversational model of e-
business (or agent) interaction. The essential features of

the model are indicated in Figure 1.
A firm’s functioning is divided into two broad

categories: interoperability technology and business
processes. Here, “business process” is a catch-all term for
everything that goes on inside an operating firm, such as
decision-making, execution of orders, etc., regardless of
how or by whom it is done. The interoperability
technology is the software the e-business uses to
communicate and interact with others, especially other e-
businesses.

In the conversational model, the interoperability
technology consists of two distinct parts: messaging and
conversation support. Messaging is the plumbing needed
to send and receive electronic communications with
others. Conversation support governs the formatting of
messages that are to be sent, the parsing of messages that
have been received, and the sequencing constraints on
exchanges of multiple, correlated messages. It is a
separate subsystem that mediates between the messaging
system and the business processes.

The remainder of this article is organized as follows.
Sections 2, 3, and 4 take up, in turn, the three parts
defined in the conversation model: messaging;
conversation support; and business process. Finally,
section 5 offers some preliminary work on standards.

2 Messaging
Web Services are often characterized as message-

based. This is true; but as commonly illustrated in
demoware, it is in fact misleading. In typical use cases and

scenarios the Web Service port types define extremely
specific input and output formats, which are usually
different for each type of functionality exposed by a
service. In this section we describe the changes in Web
Service usage patterns that will support message exchange
of the kind fully-realized e-businesses and agents need.

It is important to note that, in this section at least, we
are not describing changes in the Web Services
technology base; only changes in the way the current
technology is used.

2.1 Interaction via message exchange
This means that instead of a client invoking

functionality exposed as a Web Service, it sends a request
to the Web Service to have the functionality invoked. Or
in other words, the thing that a Web Service exposes is the
functionality of receiving a message. Instead of a
“getStockQuote” port type, for example, a Web Service
would expose a “receiveMessage” port type, to which
messages requesting stock quotes are to be sent.

This has the advantage of correctly describing the
firm's control boundaries. For example, if a firm exposes a
processRFQ service, that implies that it’s the customer
who causes an RFQ to be processed. Really, of course, the
firm inserts some sort of control point into the code that
gets invoked, whereby the firm makes the decision of
whether to really process the RFQ (e.g., by calculating a
quote and sending it back), or whether to refuse the
customer’s request. This control point changes the entire
meaning of the interaction. It converts the “service
invocation” into a “message delivery”.

Adopting a message-exchange model from the outset
makes the real nature of e-business interactions explicit.

2.2 Generic messaging
This means that delivery of message content is

independent of its format. Inputs to port types that can
receive generic messages are sufficiently flexible that any
content can be delivered in them. In effect, the
“receiveMessage” port types should take arbitrary XML
documents as input, regardless of schema. The
information contained in suggestively-named port types,
and in highly-constrained input and output signatures is
not lost, however, as we will see.

In generic messaging, arbitrary message content may
be exchanged by two interacting parties, even in cases
where the recipient of a message is unable to recognize its
meaning, make decisions about it, or even, perhaps, parse
it. There are two fundamental reasons for this:

Proper assignment of function. Constraining the set
of messages that may be sent or received is like
programming your telephone to send or receive only a
fixed set of words. It is a basic misplacement of function.
The messaging infrastructure should not to act as a
supervisor defining what may and may not be said. As we

Messaging Conversation
support

Business
processesInternet

e-business interoperability

e-business

e-business

e-business

e-business

Figure 1

www.manaraa.com

will see below, that job is properly assigned to the
conversation support.

Feedback on preferred usage. Unexpected messages
may turn out to be valuable, because they may contain
clues as to how the they should be handled. The simplest
example of this is a message containing a nonstandard
abbreviation, which may be guessed at and, by a further
exchange of messages, confirmed. Similarly, generic
messaging provides a crucial feedback mechanism by
showing a business the way in which its customers (e.g.)
are attempting to contact it. No business wants to lose a
sale because its messaging software refused to deliver the
customer’s idiosyncratic offer.

2.3 Asynchronous messaging
This means that the output to a “receiveMessage” port

type should be little more than a delivery
acknowledgment. Return messages, such as the response
to a request for information, should be sent via an
invocation of a “receiveMessage” Web Service exposed
by the original requestor.

This replaces the client-server bias built into the
synchronous invoke/return syntax with an inherently peer-
to-peer sytle of interaction. Two parties engaged in an e-
business transaction use paired, asynchronous messaging
port types to send messages to each other.

3 Conversation support
3.1 Long-running conversations

At least as important as the adoption of message
exchange is the adoption of "conversation-centric"
interactions. This means that messages are sent within an
explicit conversational context. Messages in conversations
are automatically treated as belonging to the same overall,
evolving context defined by the conversation itself.

Setup of a conversation is most naturally done via a
synchronous request/response pair. The initiator of a
conversation invokes a “recieveConversationRequest”
port type on the other participant, providing as input
information about its own identity and, crucially, a
conversation-identifier it has assigned to the conversation.
The response can be either refusal or acceptance. In the
latter case, the responder must include in the response a
conversation-identifier of its own.

Participants then exchange messages asynchronously,
but each sender also includes the recipient’s conversation-
identifier (obtained during the setup) in the message. This
permits e-businesses to carry on multiple conversations
simultaneously.

Messages received in conversations are, in effect,
placed in a conversation-specific inbox created during
conversation setup and labeled with the recipient’s
conversation-identifier. Two e-businesses, in setting up a
conversation, each create an inbox for that conversation

only, then exchange identifiers for those inbox, to be
included in each message the other party sends.

Adopting conversation-centric interaction amounts to
recognizing that in the real world of electronic commerce,
interactions typically consist of multiple correlated
messages.

3.2 Conversation management independent of
message delivery

As we said, the messaging subsystem encapsulates the
sending and receiving of messages, making it possible to
support multiple transport mechanisms (e.g., XML over
SOAP, JMS, etc.) by simply plugging them in. This is
already part of the extant Web Services standard.

The conversational session, and the logic that manages
it, are not dependent on the particular transport used.
Messages going in one direction need not use the same
transport as messages in the other, and transports may
even be renegotiated during the course of the
conversation—for example, to increase or decrease the
security level, bandwidth, etc.

3.3 Conversation Policies
In machine-to-machine conversations, free-form

dialogs are not really practical. Therefore, e-business
interactions will make frequent use of preprogrammed
interaction patterns called conversation policies (CPs).
CPs are the heart and soul of conversation support.

Conversation Policies have received much attention in
the software agents community[3,4]. However, that work
typically blends the notion of conversational state with the
notion of the agents’ internal processing states—what we
are here calling the business processes.

For our purposes, a conversation policy is a machine-
readable specification of a pattern of message exchange in
a conversation. CPs consist of message schema,
sequencing, and timing information. Conversation policies
are what take the place of the suggestively-named port
types and highly constrained input and output signatures
typically seen in Web Services demos.

Figure 2 shows a schematic of a simple CP, in which
two participants, A and B, trade bids and counter-bids
until one or the other of them accepts the current bid or
gives up. Nodes in the graph correspond to different states
of the conversational protocol. In effect, each node
represents a summary of what has transpired so far in the
conversation. Edges connecting nodes correspond to
messages being sent by one or the other party, and specify
the format or schema of the message as well as which
party is the sender. For example, in the starting state
(labeled “Start”) there is one transition, labeled “A->B:
Request Bid”, which corresponds to A sending a message
to B of the form “Request bid”. The CP does not define
any other way for the conversation to proceed from its
starting state. Similarly, there are two transitions out of the

www.manaraa.com

state labeled “Request Pending”: one in which party B
sends a message to party A of the form “Bid = x” (where x
represents some value determined by B), and another in
which party B sends “Bye”.

In carrying on a conversation, each party separately
maintains its own internal record of the conversation’s
current state, and uses the CP to update that state
whenever it sends or receives a message. For example, at
the beginning of a conversation that follows the CP in Fig.
2, A is in the “Start” state of the CP. If and when it sends
a “Request Bid” message to B, it changes its current state
to the “Request Pending” state. Similarly, B is initially in
the “Start” state; if and when it receives a “Request bid”
message from A, moves to the “Request pending” state. If
B then sends “Bid = x”, it updates its current state to “A’s
reply pending”. Or, alternatively, if it sends “Bye”, it
updates its current state to “Terminate/Failure”. When A,
currently in the “Request pending” state, receives a
message from B, it checks to see whether the message is
“Bid=x” or “Bye”, and then updates its own current state
accordingly. And so forth.

Figure 2
The sender of a message usually (though not always)

has to make a decision as to which of the possible
alternative messages to send, and often supply data as
well--e.g., the value to fill in for a bid’s amount. Similarly,
the recipient usually has to classify the message--
identifying which of the possible alternatives was sent--
and often parse it to unpack the data supplied by the
sender.

As written, the CP takes a third-person point of view.
This permits the same CP to be used by both parties, with
the decision of which role to take being made at runtime,
possibly as the result of a prior negotiation.

CPs enable extensive reuse of messages. Because a
message is interpreted with respect to the conversation’s
current state, the same message can be safely reused in
multiple contexts. For example, the message “OK” can be
used in a bid/counterbid CP to signify acceptance of a bid,
in an RFQ CP to signify acceptance of a quote, and so

forth. In all cases, the contextual information supplied by
the CP and the conversation’s current state removes any
ambiguity.

CPs provide economy of expression. The
conversational context obviates the need for repeating
information already sent, or for including extra
information in a message in the mistaken belief that the
other party might want it.

Because each of the conversing parties maintains its
own record of the conversation’s state, and uses its own
CPs to update that record, the parties need not, in fact, be
using exactly the same CP. The minimal requirement is
that, in the course of a particular conversation, the
sequence of messages they exchange corresponds, on each
side, to some path through the particular CP that party is
using.

3.4 Nested Conversation Policies
In day-to-day business, a firm’s interactions with other

firms tend to be made up of common, conventional
interaction patterns. That is to say, its conversations tend
to have phases or “stanzas” which fall into common
patterns, and are reused in different contexts. For
example, first there might be discussion of product
discovery, then negotiation of the deal, finally settlement.
And it is nested: Product discovery, for example, might
start with the customer expressing needs, the seller asking
pointed questions about them and then recommending a
list of possible matches, followed by the buyer making a
selection from the list. Negotiation might start with a
discussion of the way to negotiate: haggle over price, or
place bids in an auction, or etc., followed by, in both
cases, a pattern of message exchange appropriate to that
negotiation method. After the products are dealt with, then
the parties might turn to a dialog about delivery options (if
the goods are physical) and prices. Similar, settlement
might start with an enquiry into the methods of payment
supported, followed a selection of one of them.

Conversation policies are inherently nestable. This
means that, as part of carrying on a conversation that
obeys a given policy, the conversing parties might choose
to start a new conversation policy as a “sub-conversation”,
possibly carry it out to completion, then return to the
previous conversation policy. In effect, both parties carry
on a more narrowly scoped “child” conversation within
the enclosing context of the more broadly-scoped “parent”
conversation.

For example, two parties might be engaged in a simple
negotiated bidding procedure, in which they first identify
a set of services to be performed, then they engage in an
iterated bidding procedure to settle on a price. That
iterated bidding procedure may be represented by the CP
in Figure 3, in which the specification of the goods
outside the scope of the CP--it is part of the context--and
the messages only pertain to the bid price.

Request
pending

AtB: "Request bid"
Start

A's Reply
Pending

BtA: "Bid = x"

Terminate/
Failure

Terminate/
Success

AtB:
"Accept"

AtB:
"Reject"

BtA:
"Bye"

B's Reply
Pending

AtB: "CounterBid=x"

BtA: "CounterBid=x"
BtA:
"Accept" BtA:

"Reject"

www.manaraa.com

In this case, the CP governing the “parent”
conversation would contain transitions for starting up a

sub-conversation following the bid/counterbid CP. This is
shown in Figure 3.

3.5 Pre-/Post-condition CPs
Another style of CP, more familiar to the software

agents community, represents an interaction in terms of
coarse-grained states connected by pre- and post-
conditions. Instead of the fine-grained state structure of
Fig. 2, for example, one represents the act of negotiation
as in Fig. 4. There, a single state and a single transition
represents the exchange of all messages related to the
bidding processes. Transitions to the terminate/success

and terminate/failure states are taken when an agreement
is reached or when bidding is cancelled.

Pre-/post-condition CPs can be mapped onto fine-
grained CPs by explicitly defining separate transitions for
all the different bidding messages. But this can lead to an
undesirable proliferation of states, for example when the

conversation involves multiple attributes being negotiated
over simultaneously, with agreement on all attributes
required before the post-condition is satisfied. In such a
case, a separate fine-grained CP state would be required
for each of the possible states of partial agreement—e.g.,
“X and Y agreed to, but Z and W not.”

4 Business process
The conversational model strictly refrains from

imposing any particular architecture on the business
processes used to make the decisions that drive the
conversations. Still, there are two points to be made about
business processes in this context.

4.1 Separation from conversation management
This means that conversation support is provided by a

subsystem kept separate from the firm’s actual business
processes. If the business process is managed by a
workflow system, for example, the conversation
management is not part of the workflow. Rather, it is a
separate subsystem that is coupled to the workflow as
appropriate.

The main reason is that the interoperability technology
shouldn't place constraints on how the core of the business
works. The business processes are what the
interoperability technology is supposed to support, not
prescribe. They are the thing that differentiates one firm
from another; the thing that is most crucial to success and
survival; and not the kind of thing a firm would like to
expose to the world. Interoperability means connecting up
the business processes with the economy--not turning the
business over to someone else.

Controlling the business processes is the core of what
it means to be an independent business engaged in trade.
Each party in a trade, by definition, makes decisions
unilaterally and executes them under its own control. Even
when under contract, a firm's freedom of action is not
compromised, because its decision to obey the contract is
unilateral (as, of course, was its decision to sign the
contract in the first place). To the extent that
"interoperability" comes to encompass a firm's decision-
making and/or execution processes, that firm is not
engaging in trade--it is obeying directives.

Furthermore, it is futile to try. From outside, there is
no way to tell for sure whether a firm is unable to execute
a purchase order (for example), or unwilling to do so.

Other considerations:
Maintainability. Business processes change on

different timescales from interoperability technology.
Changing a business process needs to be done at a firm’s
instigation, on the firm's own timescale. It should not be
dependent on its customers, suppliers, and trading
partners. Changes in interoperability technology are, by
definition, on a shared timescale.

Bid-CP
Request
pending

AtB: "Request to
start Bid-CP"

Bid-CP
executing

BtA: "OK"

Ready to
set Price

Price set

[Bid-CP done:
final state = "Terminal/Success"]

[Bid-CP done:
final state =
"Terminal/Failure"]

(from other states)

(to other states)

Price
setting
failed

(to other states)

BtA: "No"

Figure 3

Bidding
AtB: "Start bidding"

Start

Terminate/
Failure

Terminate/
Success

A & B
exchange
bidding
messages

Agreement reached
Bidding cancelled

Figure 4

www.manaraa.com

Ease of modification. Changes in interoperability can
be accomplished by something as easy as downloading an
XML file for a new CP, then adding new bindings that
connect the CP to the business process. Therefore,
changes in business processes are neither forced by
changes in interoperability technology, nor hindered by it.

Though interoperability technology and business
processes are clearly linked, just as clearly they are
separate endeavors with separate driving forces,
requirements and timetables.

4.2 Proactivity
Unlike the usual Web server architecture, unlike the

J2EE programming model, and most particularly unlike
the current Web Services programming model,
conversational interactions require proactivity on the part
of the participants.

At the very minimum, it is clear that one of the parties
must initiate the conversation; hence one must be
proactive rather than purely reactive.

Furthermore, in order to decouple the act of receiving
a message from the act of processing it and (possibly)
sending a message in response, it is necessary to support a
narrowed version of proactivity that might be called
asynchronous reactivity. That is to say, an incoming
message arrives in the recipient’s inbox, and a delivery
acknowledgement is given as the return code. This
completes the activity triggered by the sender. But the
message still needs to be processed, data extracted from it
and sent back to the business process, and a decision made
as to what further action to take, what reply to make, etc.
This means the recipient must at least have the equivalent
of a timer service or event-dispatch thread running in the
background, to pick up where the message-delivery
activity left off.

These two examples merely illustrate the minimal
degree of proactivity required to carry on a conversation
at all. Clearly, within an e-business or software agent,
there are many other cases in which a long-running thread
is needed, such that the business can carry out its
functioning independently of whether anyone is sending it
a message or not.

The fact that it is needed both to drive the interactions,
and within the business process, indicates that a
mechanism of providing for proactive behavior has a
place in the Web Services programming model.

5 Evolution of Standards
We close with a preview of two extensions to industry

standards that are motivated by the conversational model.

5.1 Conversational extensions to the Java
Connector Architecture (JCA)

The JCA [5] architecture provides a set of abstractions
for connecting the J2EE platform to heterogeneous
Enterprise Information Systems (EISs). The abstractions,

defined as a set of contracts at the system and at the
application level provide a collection of scalable, secure
and transactional mechanisms that enable the integration
of EISs with application servers and enterprise
applications.

In this work we propose to extend the JCA application
and system contracts to support conversations and
conversation policies. This will extend the architecture
from the realm of EIS integration to cross-enterprise
integration. The (conversational) adapters built
conforming to the architecture, provides the guarantee of
being able to run on any J2EE platform and avail of the
system specific resources (transaction, security,
connection pooling and conversation management).

5.2 Conversation Policy XML
We are currently developing Conversation Policy

XML (cpXML), an XML dialect for describing
conversation policies. It permits CPs to be downloaded
from third parties (such as standards bodies, providers of
conversation-management systems, or specialized
protocol-development shops). Once downloaded and fed
into a firm’s conversation-management system, bindings
are added to specify the connections between the decision
points of the CP and the firm’s business logic.

cpXML is intentionally minimalist, restricting itself to
describing the message interchanges as we sketched them
in Section 3. Thus, for example, it does not cover the way
in which the CP is bound to the business logic. It takes a
third-party perspective, describing the message exchanges
in terms of “roles” which are assumed at runtime by the
businesses engaged in a conversation. It supports nesting
of conversation policies and time-based transitions (such
as timeouts on waiting for an incoming message).

Its first use will perhaps be as a standard of
comparison for evaluating forthcoming developments in
flow languages such as WSFL, etc. At this time, it is
impossible to judge wither a separate language is needed
for specifying conversation policies, or whether
hybridized flow/state-machine description language will
be practical.

6 References
1. For the acronyms in this paragraph, see

http://alphaworks.ibm.com/webservices
2. See, for example, M. Greaves and J. M. Bradshaw,

editors, Proceedings of the Autonomous Agents '99
Workshop on Specifying and Implementing
Conversation Policies, (1999)

3. M. Greaves, H. Holmback, and J. Bradshaw, What is
a Conversation Policy?, in ref. [2].

4. J2EE Connector Architecture 1.0 Specifications from
http://java.sun.com/j2ee/connector/

http://java.sun.com/j2ee/connector/

	Introduction
	Conversational model of interactions

	Messaging
	Interaction via message exchange
	Generic messaging
	Asynchronous messaging

	Conversation support
	Long-running conversations
	Conversation management independent of message delivery
	Conversation Policies
	Nested Conversation Policies
	Pre-/Post-condition CPs

	Business process
	Separation from conversation management
	Proactivity

	Evolution of Standards
	Conversational extensions to the Java Connector Architecture (JCA)
	Conversation Policy XML

	References

